

Numerical Optimization using PETSc/TAO

Alp Dener, Todd Munson, Hong Zhang

PDE-Constrained Optimization

$$\min_{\substack{u,v\\ \text{subject to}}} f(u,v)$$

$$\sup_{\substack{u:\text{ state variables}\\ c(u,v)\geq 0}} f(u,v)$$

- g: state equations
 - discretization of partial differential equation given design
- **c**: constraints
 - includes constraints on both the state and design

PDE-Constrained Optimization Applications

- Applications include
 - Inverse problems
 - Parameter estimation
 - Design optimization
- Several packages available
 - Toolkit for Advanced Optimization (PETSc/TAO)
 - Rapid Optimization Library (ROL)

Outline

- Bound-constrained optimization methods
 - Best method to apply is problem dependent
 - TAO provides many choices for nonlinear problems
 - Generally, use second derivatives for best performance
 - MFEM can easily be used for optimization problems
- Dynamic optimization problems using adjoints

The Obstacle Problem

$$\label{eq:linear_equation} \begin{split} & \underset{u}{\text{minimize}} & & \int_{\Omega} |\nabla u|^2 dx \\ & \text{subject to} & & u(x) \geq \phi(x) \; \forall \; x \in \Omega \\ & & u(x) = 0 \; \forall \; x \in d\Omega \end{split}$$

TAO Bound-Constrained Algorithms

$$\min_{s} \qquad \nabla f(u^k)^T s + \frac{1}{2} s^T H^k s$$

subject to $x^k + s \ge 0$

- Approximate the objective function
 - Quasi-Newton (-tao_type bqnls) uses approximation
 - Newton-Krylov (-tao_type bnls) uses Hessian
- Approximate the set of active bounds
- Solving a linear system of equations for direction
- Ensure global convergence
 - Line search
 - Trust region

PETSc/TAO: Quasi-Newton Methods (bqnls)

- Multiple limited-memory QN approximations implemented as PETSc Mat objects
- Relative performances compared on full set of bound constrained CUTEst problems
- TAO QN algorithms can seamlessly change methods

PETSc/TAO: Newton-Krylov Methods (bnls)

Globalization strategy makes very little difference

Effect of Second-Order Information

 NK outperforms QN in both nonlinear iterations and function/gradient/Hessian evaluations

The Obstacle Problem: MFEM-TAO Integration

minimize
$$\int_{\Omega} |\nabla u|^2 dx$$

subject to
$$u(x) \ge \phi(x) \ \forall \ x \in \Omega$$

$$u(x) = 0 \ \forall \ x \in d\Omega$$

- Newton-Krylov method
- Objective, gradient and Hessian evaluations through

The Obstacle Problem: Quasi-Newton Solution

- QN solution converges in 292 iterations
- A lot of computational effort is spent making small changes near the obstacle

Transition to the Hands On Lesson

https://xsdk-

 $\underline{project.github.io/ATPESC2018HandsOnLessons/lessons/obstacle_tao/}$

Adjoints are key ingredients in PDE-constrained optimization

Research interests have been shifting beyond modelling and simulation of a physical system to **outer-loop applications** such as **PDE-constrained optimization**, optimal design and control, uncertainty quantification etc.

Solving optimization problems often requires to compute derivatives of a functional, which can be computed efficiently with **adjoints**.

What is PDE-constrained optimization?

Goal

Solve the discrete optimization problem

$$\begin{aligned} & \underset{p,u}{\text{minimize}} \, \mathcal{J}(\pmb{u},p) \\ & \text{subject to} \quad c(\pmb{u},p,t) = 0 \\ & g(\pmb{u},p) = 0 \\ & h(\pmb{u},p) \leq 0 \end{aligned} \qquad \text{(PDE constraints)}$$

where

- ullet ${\cal J}$ is the objective functional
- c represents the discretized PDE equation
- $u \in \mathbb{R}^n$ is the PDE solution state
- $p \in \mathcal{R}^m$ is the parameters

Because the dimension of u can be really high, a reduced formulation is often used.

$$\mathcal{J}(p) = \mathcal{J}(\textcolor{red}{\mathbf{u}}(p), p)$$

An example: data assimilation

The objective function of data assimilation is

$$\mathcal{J}(u(u_0), u_0^a) = \underbrace{\frac{1}{2} \left\| Qu - d \right\|^2}_{\text{observation error}} + \underbrace{\frac{\alpha}{2} \left\| L(u_0^a - u_0^b) \right\|^2}_{\text{background error}}$$

- \square state variable y, control or design variable u, data d
- \square Q is observation operator
- \square L is cost functional for design
- \square α is tradeoff between cost of design and fitting data

- Physical interpretation: Determine the optimal initial conditions for a numerical model that minimizes the difference between the forecast and the observations
- A regulization term is often added to the cost functional to ensure existence and uniqueness
- Gradient-based optimization algorithms require local derivatives (sensitivities)

Computing sensitivities: finite differences

- Easy to implement
- Inefficient for many parameter case, due to one-at-a-time
- Possible to perturb multiple parameters simultaneously by using graph coloring
- ullet Error depends on the perturbation value Δp

Computing sensitivities: automatic differentiation

- AD can evaluate the sensitivities for an arbitrary sequence of computer codes
- Difficulties of low-level AD
 - pointers
 - dynamic memory
 - directives
 - function calls from external libraries
 - iterative processes (e.g. Newton iteration)
 - non-smooth problems

17

Forward and adjoint sensitivity analysis (SA) approaches

We compute the gradients by differentiating the time stepping algorithm, e.g. backward Euler $(y_{n+1} = y_n + h \mathbf{f}(t_{n+1}, y_{n+1}))$

	Forward	Adjoint
Best to use when	# of parameters << # functionals	# of parameters $>>$ # of functionals
Complexity	\mathcal{O} (# of parameters)	\mathcal{O} (# of functionals)
Checkpointing	No	Yes
Implementation	Medium	High
Accuracy	High	High

Adjoint integration with PETSc

PETSc: open-source numerical library for large-scale parallel computation

https://www.mcs.anl.gov/petsc/

- ullet \sim 200,000 yearly downloads
- Portability
 - 32/64 bit, real/complex
 - single/double/quad precision
 - tightly/loosely coupled architectures
 - Unix, Linux, MacOS, Windows
 - ► C, C++, Fortran, Python, MATLAB
 - GPGPUs and support for threads

Extensibility

 ParMetis, SuperLU, SuperLU_Dist, MUMPS, HYPRE, UMFPACK, Sundials, Elemental, Scalapack, UMFPack...

Toolkit

- sequential and parallel vectors
- sequential and parallel matrices (AIJ, BAIJ...)
- iterative solvers and preconditioners
- parallel nonlinear solvers
- adaptive time stepping (ODE and DAE) solvers

Other software for adjoints and related functionality

Also available in:

- SUNDIALS
- Trilinos

This presentation focuses on experiences in PETSc.

TSAdjoint Interfaces are smilar to TS interfaces

- Designed to reuse functionalities (implemented in PETSc or provided by users)
- Aim for general-purpose solutions
- Support both explicit and implicit methods and timestep adaptivity
- Allow multiple cost functionals

Optimal checkpointing for given storage allocation

- Minimize the number of recomputations and the number of reads/writes by using the revolve library of Griewank and Walther
 - ► **Revolve** is designed as a top-level controller for time stepping
 - ► TSTrajectory consults **revolve** about when to store/restore/recompute
- Incorporate a variety of single-level and two-level schemes for offline and online checkpointing
 - existing algorithms work great for RAM only checkpointing
 - optimal extension for RAM+disk (work in progress)

An optimal schedule given 3 allowable checkpoints in RAM:

blue arrow: store a checkpoint red arrow: restore a checkpoint black arrow: a step circle: solution

Validating Jacobian and sensitivity is critical for optimization

- PETSc and TAO (optimization component in PETSc) can test hand-coded Jacobian and gradients against finite difference approximations on the fly
- Jacobian test: -snes_test_jacobian

```
Norm of matrix ratio 2.83894e-08, difference 1.08067e-05 (user-defined state)
Norm of matrix ratio 3.36163e-08, difference 1.31068e-05 (constant state -1.0)
Norm of matrix ratio 3.33553e-08, difference 1.3005e-05 (constant state 1.0)
```

• Gradient test: -tao_test_gradient

```
||fd|| 0.168434, ||hc|| = 1.18456, angle cosine = (fd'hc)/||fd|||hc|| = 0.987391
2-norm ||fd-hc||/max(||hc||,||fd||) = 0.859896, difference ||fd-hc|| = 1.01859
max-norm ||fd-hc||/max(||hc||,||fd||) = 0.853218, difference ||fd-hc|| = 0.311475
```

- -snes_test_jacobian_view and -tao_test_gradient_view can show the differences element-wisely
- Nonlinear solve is not very sensitive to the accuracy of Jacobian, but adjoint solve needs accurate Jacobian

Solving dynamic constrained optimization

Set up TAO:

- Initial values for the variable vector
- Variable bounds for bounded optimization
- Objective function
- Gradient function
- Hessian matrix for Newton methods (optional)

Set up ODE solver and adjoint solver:

- ODE right-hand-side function and Jacobian
- Additional Jacobian w.r.t parameters if gradients to the parameters are desired.
- ODE Initial condition
- Terminal conditions (initial values for adjoint variables) for the adjoint variables

Hands-on: an inverse initial value problem

$$\begin{split} & \underset{U_0}{\text{minimize}} \, \|U(t_f) - U^{ob}(t_f)\|_2 \\ \text{subject to} & \quad \frac{d\mathbf{u}}{dt} = D_1 \nabla^2 \mathbf{u} - \mathbf{u} \mathbf{v}^2 + \gamma (1 - \mathbf{u}) \\ & \quad \frac{d\mathbf{v}}{dt} = D_2 \nabla^2 \mathbf{v} + \mathbf{u} \mathbf{v}^2 - (\gamma + \kappa) \mathbf{v} \end{split}$$

where $U = [\mathbf{u}; \mathbf{v}]$ is the PDE solution vector, U_0 is the initial condition. The reaction and diffusion of two interacting species can produce spatial patterns over time.

Interpretation Given the pattern at the final time, can we find the initial pattern? **Link to Hands-on Lesson**

Tips and advice

- Jacobian can be efficiently approximated using finite difference with coloring (-snes_fd_coloring); particularly convenient via DMDA
- Most of the difficulties stem from mistakes in the hand-coded Jacobian function; make sure to validate it carefully
- Use direct solvers such as SuperLU and MUMPS for best accuracy (but not scalability) of the gradients
- Use -tao_monitor -ts_monitor -ts_adjoint_monitor -snes_monitor -log_view for monitoring the solver behavior and profiling the performance
- -malloc_hbw allows us to do the computation using MCDRAM and checkpointing using DRAM on Intel's Knights Landing processors (Argonne's Theta, NERSC's Cori)
- Check the user manual and the website for more information, and ask questions on the mailing lists

Takeaways

- PETSc and TAO help you rapidly develop parallel code for dynamic constrained optimization
- Adjoint as an enabling technology for optimization
- PETSc offers discrete adjoint solvers that take advantage of highly developed PETSc infrastructure: MPI, parallel vectors, domain decomposition, linear/nonlinear solvers
- Requires minimal user input, and reuses information provided for the forward simulation
- Advanced checkpointing, transparent to the user
- Validation for Jacobian and gradients using finite differences

27

Thank you!